

## Pierre-Marie Pédrot

INRIA

$$
2023 / 12 / 01
$$

## Today's Focus

## Church's thesis!

All reasonable computational models are equivalent.

## Today's Focus

All reasonable computational models are equivalent.

## Today's Focus

All reasonable computational models are equivalent.

## The internal Church thesis in a theory $\mathcal{T}$ !

From within $\mathcal{T}$, "all functions $\mathbb{N} \rightarrow \mathbb{N}$ are computable".

## Horrible Encodings Ahead

## Let's fix a simple type theory $\mathcal{T}$ containing arithmetic.

$\rightsquigarrow$ One can define the (decidable) Turing predicate:

$$
\frac{p: \mathbb{N} \quad n: \mathbb{N} \quad k: \mathbb{N}}{\mathrm{T}(p, n, k): \operatorname{Prop}}
$$

" $\mathrm{T}(p, n, k)$ holds iff the Turing machine $p$ returns $n$ in $\leq k$ steps."

## Horrible Encodings Ahead

## Let's fix a simple type theory $\mathcal{T}$ containing arithmetic.

$\rightsquigarrow$ One can define the (decidable) Turing predicate:

$$
\frac{p: \mathbb{N} \quad n: \mathbb{N} \quad k: \mathbb{N}}{\mathrm{T}(p, n, k): \text { Prop }}
$$

" $\mathrm{T}(p, n, k)$ holds iff the Turing machine $p$ returns $n$ in $\leq k$ steps."
[NB: for readability, l'll henceforth write $\mathbb{P}:=\mathbb{N}$ to indicate numbers coding programs]

## Horrible Encodings Ahead

## Let's fix a simple type theory $\mathcal{T}$ containing arithmetic.

$\rightsquigarrow$ One can define the (decidable) Turing predicate:

$$
\frac{p: \mathbb{N} \quad n: \mathbb{N} \quad k: \mathbb{N}}{\mathrm{T}(p, n, k): \operatorname{Prop}}
$$

" $\mathbf{T}(p, n, k)$ holds iff the Turing machine $p$ returns $n$ in $\leq k$ steps."
[NB: for readability, l'll henceforth write $\mathbb{P}:=\mathbb{N}$ to indicate numbers coding programs]
$\rightsquigarrow$ We say that $f: \mathbb{N} \rightarrow \mathbb{N}$ is computed by $p: \mathbb{P}$, written calc $f p$ when

$$
\vdash_{\mathcal{T}} \forall n: \mathbb{N} . \exists k: \mathbb{N} . \mathbf{T}(p \bullet n, f n, k)
$$

## Horrible Encodings Ahead

## Let's fix a simple type theory $\mathcal{T}$ containing arithmetic.

$\rightsquigarrow$ One can define the (decidable) Turing predicate:

$$
\frac{p: \mathbb{N} \quad n: \mathbb{N} \quad k: \mathbb{N}}{\mathrm{T}(p, n, k): \operatorname{Prop}}
$$

" $\mathrm{T}(p, n, k)$ holds iff the Turing machine $p$ returns $n$ in $\leq k$ steps."
[NB: for readability, l'll henceforth write $\mathbb{P}:=\mathbb{N}$ to indicate numbers coding programs]
$\rightsquigarrow$ We say that $f: \mathbb{N} \rightarrow \mathbb{N}$ is computed by $p: \mathbb{P}$, written calc $f p$ when

$$
\vdash_{\mathcal{T}} \forall n: \mathbb{N} . \exists k: \mathbb{N} . \mathrm{T}(p \bullet n, f n, k)
$$

Internal CT
$\mathcal{T}$ validates CT if $\vdash_{\mathcal{T}} \forall f: \mathbb{N} \rightarrow \mathbb{N} . \exists p: \mathbb{P}$. calc $f p$

## Alonzo in Maŝinmondo

## CT is a weird principle!

- Implies a mechanical world
- A staple of Russian constructivism
- In presence of choice, incompatible with funext
- In presence of choice, incompatible with classical logic



## Alonzo in Maŝinmondo

## CT is a weird principle!

- Implies a mechanical world
- A staple of Russian constructivism
- In presence of choice, incompatible with funext
- In presence of choice, incompatible with classical logic



## A fleeting panic

Is it actually consistent?

## Alonzo in Maŝinmondo

## CT is a weird principle!

- Implies a mechanical world
- A staple of Russian constructivism
- In presence of choice, incompatible with funext
- In presence of choice, incompatible with classical logic



## A fleeting panic

Is it actually consistent?

$$
\mathfrak{J a} .
$$

(Mumble something about The Effective ToposTM being a model of $\mathrm{HOL}+\mathrm{CT}$.)

## Blanket Propaganda

## MARTIN-LÖF'S TYPE THEORY

## Blanket Propaganda

## MARTIN-LÖF'S TYPE THEORY

Is this a logical foundation?

## Blanket Propaganda

## MARTIN-LÖF'S TYPE THEORY

Is this a logical foundation?
Is this a programming language?

## Blanket Propaganda

## MARTIN-LÖF'S TYPE THEORY

Is this a logical foundation?
Is this a programming language?
Is this crypto-realizability?

## Blanket Propaganda

## MARTIN-LÖF'S TYPE THEORY

Is this a logical foundation?
Is this a programming language?
Is this crypto-realizability?


Is this Coup?

## Blanket Propaganda

## MARTIN-LÖF'S TYPE THEORY

Is this a logical foundation?
Is this a programming language?
Is this crypto-realizability?


## Is this Coup?

All of this and much more!

## We Need to Go Deeper

## A Legitimate Question

## "Can we extend Martin-Löf's Type Theory with CT?"

## We Need to Go Deeper

A Legitimate Question
"Can we extend Martin-Löf's Type Theory with CT?"

An Even More Legitimate Question

## "Why would I do that?"

## We Need to Go Deeper

## A Legitimate Question

"Can we extend Martin-Löf's Type Theory with CT?"

## An Even More Legitimate Question

## "Why would I do that?"

- This watch does not smell of mustard.
- Simple type theory is cool, but a bit old-fashioned and limited
- In MLTT, functions are already programs
- MLTT + CT is the foundation for synthetic computability


## Synthetic Computability

## Never suffer with Turing machines again!

## Synthetic Computability

## Never suffer with Turing machines again!

- Another instance of the synthetic trend
- Prove computability results (almost) pain-free in Coq!
- Synthetic homotopy: MLTT terms are paths
- Synthetic computability: MLTT terms are programs


## Synthetic Computability

## Never suffer with Turing machines again!

- Another instance of the synthetic trend
- Prove computability results (almost) pain-free in Coq!
- Synthetic homotopy: MLTT terms are paths
- Synthetic computability: MLTT terms are programs

The one missing primitive: inspecting the code of a program.

## Synthetic Computability

## Never suffer with Turing machines again!

- Another instance of the synthetic trend
- Prove computability results (almost) pain-free in Coq!
- Synthetic homotopy: MLTT terms are paths
- Synthetic computability: MLTT terms are programs

The one missing primitive: inspecting the code of a program.

## That's exactly what CT gives you.

$$
\vdash \Pi(f: \mathbb{N} \rightarrow \mathbb{N}) . \Sigma(p: \mathbb{P}) . \text { calc } f p
$$

## Synthetic Computability

## Never suffer with Turing machines again!

- Another instance of the synthetic trend
- Prove computability results (almost) pain-free in Coq!
- Synthetic homotopy: MLTT terms are paths
- Synthetic computability: MLTT terms are programs

The one missing primitive: inspecting the code of a program.

## That's exactly what CT gives you.

$$
\vdash \Pi(f: \mathbb{N} \rightarrow \mathbb{N}) . \Sigma(p: \mathbb{P}) . \text { calc } f p
$$

Several people doing SCT in Coq
$\rightsquigarrow$ including this guy next door to me


## Today's Definitely Legitimate Question

## "Can we extend Martin-Löf's Type Theory with CT?"

## I think, Therefore I merely am

In dependent type theories, existing is a complex matter

$\Sigma x: A . B$<br>actual existence<br>proof relevant<br>choice built-in<br>in Type

## I think, Therefore I merely am

In dependent type theories, existing is a complex matter

$\Sigma x: A . B$<br>actual existence proof relevant<br>choice built-in<br>in Type

v.s.

$$
\begin{gathered}
\exists x: A . B \\
\text { mere existence } \\
\text { proof-irrelevant } \\
\text { no choice a priori } \\
\text { in Prop }
\end{gathered}
$$

We have not one, but two theses.

$$
\begin{aligned}
& \mathrm{CT}_{\exists}:=\Pi(f: \mathbb{N} \rightarrow \mathbb{N}) \cdot \exists p: \mathbb{P} \text {. calc } f p \\
& \mathrm{CT}_{\Sigma}:=\Pi(f: \mathbb{N} \rightarrow \mathbb{N}) . \Sigma p: \mathbb{P} . \text { calc } f p
\end{aligned}
$$

## I think, Therefore I merely am

In dependent type theories, existing is a complex matter

$$
\Sigma x: A . B
$$<br>actual existence<br>proof relevant<br>choice built-in<br>in Type

v.s. $\quad \exists x: A . B$
mere existence proof-irrelevant no choice a priori in Prop

We have not one, but two theses.

$$
\begin{aligned}
& \mathrm{CT}_{\exists}:=\Pi(f: \mathbb{N} \rightarrow \mathbb{N}) . \exists p: \mathbb{P} \text {. calc } f p \\
& \mathrm{CT}_{\Sigma}:=\Pi(f: \mathbb{N} \rightarrow \mathbb{N}) . \Sigma p: \mathbb{P} . \text { calc } f p
\end{aligned}
$$

Which do we want?

## I choose you, Sigma-chu

$$
\mathrm{CT}_{\exists} \quad:=\Pi(f: \mathbb{N} \rightarrow \mathbb{N}) . \exists p: \mathbb{P} . \text { calc } f p
$$

- $\Pi(x: A) \cdot \exists(y: B) . P$ does not magically turn into a function
- i.e. choice does not hold over $\exists / \exists$ is non-computational
- does not endanger function extensionality
- MLTT $+\mathrm{CT}_{\exists}$ is known to be consistent


## I choose you, Sigma-chu

$$
\mathrm{CT}_{\exists}:=\Pi(f: \mathbb{N} \rightarrow \mathbb{N}) . \exists p: \mathbb{P} . \text { calc } f p
$$

- $\Pi(x: A) \cdot \exists(y: B) . P$ does not magically turn into a function
- i.e. choice does not hold over $\exists / \exists$ is non-computational
- does not endanger function extensionality
- MLTT $+\mathrm{CT}_{\exists}$ is known to be consistent (The Effective Topos ${ }^{\text {TM }}$ )


## I choose you, Sigma-chu

$$
\mathrm{CT}_{\exists} \quad:=\Pi(f: \mathbb{N} \rightarrow \mathbb{N}) . \exists p: \mathbb{P} . \text { calc } f p
$$

- $\Pi(x: A) \cdot \exists(y: B) . P$ does not magically turn into a function
- i.e. choice does not hold over $\exists / \exists$ is non-computational
- does not endanger function extensionality
- MLTT $+\mathrm{CT}_{\exists}$ is known to be consistent (The Effective Topos ${ }^{\text {TM }}$ )

$$
\mathrm{CT}_{\Sigma}:=\Pi(f: \mathbb{N} \rightarrow \mathbb{N}) . \Sigma p: \mathbb{P} . \text { calc } f p
$$

- Dually, $\mathrm{CT}_{\Sigma}$ is the hallmark of weird crap going on
- Intuitionistic non-choice gives a quote function $(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
- Consistency of MLTT $+\mathrm{CT}_{\Sigma}$ is not established


## I choose you, Sigma-chu

$$
\mathrm{CT}_{\exists}:=\Pi(f: \mathbb{N} \rightarrow \mathbb{N}) . \exists p: \mathbb{P} . \text { calc } f p
$$

- $\Pi(x: A) \cdot \exists(y: B) . P$ does not magically turn into a function
- i.e. choice does not hold over $\exists / \exists$ is non-computational
- does not endanger function extensionality
- MLTT $+\mathrm{CT}_{\exists}$ is known to be consistent (The Effective Topos ${ }^{\text {TM }}$ )

$$
\mathrm{CT}_{\Sigma}:=\Pi(f: \mathbb{N} \rightarrow \mathbb{N}) . \Sigma p: \mathbb{P} . \text { calc } f p
$$

- Dually, $\mathrm{CT}_{\Sigma}$ is the hallmark of weird crap going on
- Intuitionistic non-choice gives a quote function $(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
- Consistency of MLTT $+\mathrm{CT}_{\Sigma}$ is not established

This is the one we really want to have in MLTT!

## Second-hand "Quotes" from Anonymous Experts**



## "MLTT is obviously inconsistent with $\mathrm{CT}_{\Sigma}$ "

M.E. (Birmingham)

## "I believe that MLTT cannot validate $\mathrm{CT}_{\Sigma}{ }^{\prime \prime}$


T.S. (Darmstadt)
** All these quotes are a pure work of fiction. Serving suggestion. May contain phthalates.

## Somebody is Wrong on the Internet

## Are you seriously kidding me?

## Somebody is Wrong on the Internet

## Are you seriously kidding me?

- In MLTT, functions are already frigging programs!
- $\mathrm{CT}_{\Sigma}$ holds externally, it's called extraction (duh)

$$
\text { for all } \quad \vdash f: \mathbb{N} \rightarrow \mathbb{N} \text { there is } \quad \vdash p: \mathbb{P} \quad \text { s.t. } \quad \vdash \text { calc } f p
$$

- It is hence obvious that $\mathrm{CT}_{\Sigma}$ is compatible with MLTT
- We just have to handle those pesky open terms!


## Somebody is Wrong on the Internet

## Are you seriously kidding me?

- In MLTT, functions are already frigging programs!
- $\mathrm{CT}_{\Sigma}$ holds externally, it's called extraction (duh)

$$
\text { for all } \quad \vdash f: \mathbb{N} \rightarrow \mathbb{N} \text { there is } \quad \vdash p: \mathbb{P} \quad \text { s.t. } \quad \vdash \text { calc } f p
$$

- It is hence obvious that $\mathrm{CT}_{\Sigma}$ is compatible with MLTT
- We just have to handle those pesky open terms!

A tiny detail...?
No: many properties are true externally but negated internally.

## The Plot Thickens

The literature is not very engaging either!

## The Plot Thickens

## The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT + CT. $\rightsquigarrow$ a strict subset of MLTT, without the $\xi$ rule.

$$
\frac{\Gamma, x: A \vdash M \equiv N: B}{\Gamma \vdash \lambda x: A . M \equiv \lambda x: A . N: \Pi x: A . B}
$$

## The Plot Thickens

## The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT +CT . $\rightsquigarrow$ a strict subset of MLTT, without the $\xi$ rule.

$$
\frac{\Gamma, x: A \vdash M \equiv N: B}{\Gamma \vdash \lambda x: A . M \equiv \lambda x: A . N: \Pi x: A . B}
$$

this is throwing the baby with the bathwater

## The Plot Thickens

## The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT +CT . $\rightsquigarrow$ a strict subset of MLTT, without the $\xi$ rule.

$$
\frac{\Gamma, x: A \vdash M \equiv N: B}{\Gamma \vdash \lambda x: A \cdot M \equiv \lambda x: A \cdot N: \Pi x: A . B}
$$

## this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.

## The Plot Thickens

## The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT +CT . $\rightsquigarrow$ a strict subset of MLTT, without the $\xi$ rule.

$$
\frac{\Gamma, x: A \vdash M \equiv N: B}{\Gamma \vdash \lambda x: A . M \equiv \lambda x: A . N: \Pi x: A . B}
$$

## this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.

- Not even clear what theory they implement


## The Plot Thickens

## The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT +CT . $\rightsquigarrow$ a strict subset of MLTT, without the $\xi$ rule.

$$
\frac{\Gamma, x: A \vdash M \equiv N: B}{\Gamma \vdash \lambda x: A . M \equiv \lambda x: A . N: \Pi x: A . B}
$$

## this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.

- Not even clear what theory they implement (:)
- Proved in three papers, not peer-reviewed, totalling $>120$ pages!


## The Plot Thickens

## The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT +CT . $\rightsquigarrow$ a strict subset of MLTT, without the $\xi$ rule.

$$
\frac{\Gamma, x: A \vdash M \equiv N: B}{\Gamma \vdash \lambda x: A . M \equiv \lambda x: A . N: \Pi x: A . B}
$$

## this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.

- Not even clear what theory they implement (:)
- Proved in three papers, not peer-reviewed, totalling $>120$ pages!
- Using game semantics!



## The Plot Thickens

## The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT +CT . $\rightsquigarrow$ a strict subset of MLTT, without the $\xi$ rule.

$$
\frac{\Gamma, x: A \vdash M \equiv N: B}{\Gamma \vdash \lambda x: A . M \equiv \lambda x: A . N: \Pi x: A . B}
$$

## this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.

- Not even clear what theory they implement (:)
- Proved in three papers, not peer-reviewed, totalling $>120$ pages!
- Using game semantics!


## ABANDON THRAM

## The Yes Needs The No To Win Against The No

But consistency of MLTT $+\mathrm{CT}_{\Sigma}$ is obviously trivial...

## The Yes Needs The No To Win Against The No

But consistency of MLTT $+\mathrm{CT}_{\Sigma}$ is obviously trivial...

Only one way out: prove that I am right!

- Define an extension of MLTT proving CT $_{\Sigma}$
- Prove it's consistent / canonical / strongly normalizing / ...
- Formalize this in Coq otherwise nobody believes you


## The Yes Needs The No To Win Against The No

But consistency of MLTT $+\mathrm{CT}_{\Sigma}$ is obviously trivial...

Only one way out: prove that I am right!

- Define an extension of MLTT proving $\mathrm{CT}_{\Sigma}$
- Prove it's consistent / canonical / strongly normalizing / ...
- Formalize this in Coq otherwise nobody believes you

Spoiler alert: we will sketch that in the rest of the talk.

## "MLTT"

We define "MLTT" as the extension of MLTT with two new primitives.

$$
M, N:=\ldots|\odot M| \bigcirc M N
$$

## "MLTT"

We define "MLTT" as the extension of MLTT with two new primitives.

$$
\begin{aligned}
& \qquad M, N:=\ldots|\& M| Y M N \\
& \frac{\Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N}}{\Gamma \vdash ¢ M: \mathbb{P}}
\end{aligned}
$$

## "MLTT"

We define "MLTT" as the extension of MLTT with two new primitives.

$$
\begin{gathered}
M, N:=\ldots|\& M| Y M N \\
\frac{\Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N}}{\Gamma \vdash \rho M: \mathbb{P}} \quad \frac{\Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N} \quad \Gamma \vdash N: \mathbb{N}}{\Gamma \vdash ¢ M N: \operatorname{eval}(९ M) N(M N)}
\end{gathered}
$$

where

$$
\begin{array}{ll}
\text { eval } & : \mathbb{P} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \rightarrow \square \\
\text { eval } P N V & \sim \\
\text { program } P \text { applied to } N \text { normalizes to } V
\end{array}
$$

## "MLTT"

We define "MLTT" as the extension of MLTT with two new primitives.

$$
\begin{gathered}
M, N:=\ldots|\& M| Y M N \\
\frac{\Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N}}{\Gamma \vdash ¢ M: \mathbb{P}} \quad \frac{\Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N} \quad \Gamma \vdash N: \mathbb{N}}{\Gamma \vdash ¢ M N: \operatorname{eval}(¢ M) N(M N)}
\end{gathered}
$$

where

$$
\begin{array}{ll}
\text { eval } & : \mathbb{P} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \rightarrow \square \\
\text { eval } P N V & \sim \text { program } P \text { applied to } N \text { normalizes to } V
\end{array}
$$

The system is parameterized by a computation model, given by:

- A meta-function $\lceil\cdot\rceil$ : term $\Rightarrow \mathbf{N} \quad$ (your favourite Gödel numbering)


## "MLTT"

We define "MLTT" as the extension of MLTT with two new primitives.

$$
M, N:=\ldots|\odot M| \text { ९ } M N
$$

$$
\Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N}
$$

$$
\Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N} \quad \Gamma \vdash N: \mathbb{N}
$$

$$
\Gamma \vdash \rho M: \mathbb{P} \quad \overline{\Gamma \vdash \varphi M N: \operatorname{eval}(\ell M) N(M N)}
$$

where

$$
\begin{array}{ll}
\text { eval } & : \mathbb{P} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \rightarrow \square \\
\text { eval } P N V & \sim \text { program } P \text { applied to } N \text { normalizes to } V
\end{array}
$$

The system is parameterized by a computation model, given by:

- A meta-function $\lceil\cdot\rceil$ : term $\Rightarrow \mathbf{N} \quad$ (your favourite Gödel numbering)
- An MLTT function $\vdash$ run $: \mathbb{P} \rightarrow \mathbb{N} \rightarrow \mathfrak{P}(\mathbb{N})$
where $\mathfrak{P}(A):=\mathbb{N} \rightarrow$ option $A$ is the partiality monad and eval is derived from run through standard combinators


## The Hard Part

What is the hard part?

## The Hard Part

What is the hard part?

## Conversion!



## The Hard Part

## What is the hard part?

## Conversion!

$$
\frac{\Gamma \vdash M: B \quad \Gamma \vdash A \equiv B}{\Gamma \vdash M: A}
$$

In MLTT the type system embeds the runtime.

## The Hard Part

## What is the hard part?

## Conversion!

$$
\frac{\Gamma \vdash M: B \quad \Gamma \vdash A \equiv B}{\Gamma \vdash M: A}
$$

In MLTT the type system embeds the runtime.
We need to ensure that convertible terms are quoted to the same number.

Remember that $\mathrm{CT}_{\Sigma}$ is inconsistent with funext.
Thankfully conversion is intensional in MLTT...

## Naive Solution

We need to ensure that convertible terms are quoted to the same number.

## Naive Solution

We need to ensure that convertible terms are quoted to the same number.

Assume we can magically choose one representative per convertibility class.

$$
\Gamma \vdash M \equiv N: \mathbb{N} \rightarrow \mathbb{N} \quad \text { iff } \quad\lceil\varepsilon(M)\rceil=\lceil\varepsilon(N)\rceil
$$

Unfortunately, this is not going to be stable by substitution.

$$
\varepsilon(M\{x:=N\}) \neq \varepsilon(M)\{x:=\varepsilon(N)\}
$$

## Immediate breakage of conversion!

## The Sigh Rule

## This is the problem solved by mTT.

Remember the $\xi$ rule:

$$
\frac{\Gamma, x: A \vdash M \equiv N: B}{\Gamma \vdash \lambda x: A . M \equiv \lambda x: A . N: \Pi x: A . B}
$$

## The Sigh Rule

## This is the problem solved by mTT.

Remember the $\xi$ rule:

$$
\frac{\Gamma, x: A \vdash M \equiv N: B}{\Gamma \vdash \lambda x: A \cdot M \equiv \lambda x: A \cdot N: \Pi x: A . B}
$$

No $\xi$ rule $\sim$ conversion on functions implies syntactic equality

## The Sigh Rule

## This is the problem solved by mTT.

Remember the $\xi$ rule:

$$
\frac{\Gamma, x: A \vdash M \equiv N: B}{\Gamma \vdash \lambda x: A \cdot M \equiv \lambda x: A \cdot N: \Pi x: A . B}
$$

No $\xi$ rule $\sim$ conversion on functions implies syntactic equality

A violent way to resolve the problem!
We need something else.

## The major insight for "MLTT"

Open terms are a lie! It's a conspiracy from Big Variable!

## The major insight for "MLTT"

## Open terms are a lie! It's a conspiracy from Big Variable!

(Source: $\mathbb{X}$. )

## The major insight for "MLTT"

Open terms are a lie! It's a conspiracy from Big Variable!
(Source: X.)
$Q$ and $Y$ will only compute on (deep normal) closed terms

## The major insight for "MLTT"

## Open terms are a lie! It's a conspiracy from Big Variable!

(Source: $\mathbb{X}$. )
$Q$ and $Q$ will only compute on (deep normal) closed terms

$$
\frac{\Gamma \vdash M \equiv N: \mathbb{N} \rightarrow \mathbb{N}}{\Gamma \vdash \rho M \equiv \rho N: \mathbb{P}} \quad \frac{\Gamma \vdash M \equiv M^{\prime}: \mathbb{N} \rightarrow \mathbb{N} \quad \Gamma \vdash N \equiv N^{\prime}: \mathbb{N}}{\Gamma \vdash \text { 个 } M N \equiv \text { १ } M^{\prime} N^{\prime}: \operatorname{eval}(\rho M) N(M N)}
$$

## The major insight for "MLTT"

## Open terms are a lie! It's a conspiracy from Big Variable!

(Source: $\mathbb{X}$. )
$Q$ and $Q$ will only compute on (deep normal) closed terms

$$
\begin{gathered}
\frac{\Gamma \vdash M \equiv N: \mathbb{N} \rightarrow \mathbb{N}}{\Gamma \vdash ¢ M \equiv \& N: \mathbb{P}} \quad \frac{\Gamma \vdash M \equiv M^{\prime}: \mathbb{N} \rightarrow \mathbb{N} \quad \Gamma \vdash N \equiv N^{\prime}: \mathbb{N}}{\Gamma \vdash Q M N \equiv Q M^{\prime} N^{\prime}: \operatorname{eval}(8 M) N(M N)} \\
\frac{\Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N} \quad M \text { closed dnf }}{\Gamma \vdash ¢ M \equiv\lceil M \mid: \mathbb{P}}
\end{gathered}
$$

## The major insight for "MLTT"

## Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)
$i$ and $Q$ will only compute on (deep normal) closed terms


## The major insight for "MLTT"

## Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)
$Q$ and $Q$ will only compute on (deep normal) closed terms

$$
\begin{aligned}
& \frac{\Gamma \vdash M \equiv N: \mathbb{N} \rightarrow \mathbb{N}}{\Gamma \vdash ¢ M \equiv 母 N: \mathbb{P}} \quad \frac{\Gamma \vdash M \equiv M^{\prime}: \mathbb{N} \rightarrow \mathbb{N} \quad \Gamma \vdash N \equiv N^{\prime}: \mathbb{N}}{\Gamma \vdash \text { Q } M N \equiv \text { ¢ } M^{\prime} N^{\prime}: \operatorname{eval}(8 M) N(M N)} \\
& \frac{\Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N} \quad M \text { closed dnf }}{\Gamma \vdash \rho M \equiv\lceil M\rceil: \mathbb{P}} \\
& \Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N} \quad M, P \text { closed dnf } \quad n \in \mathbf{N} \quad \Gamma \vdash P: \text { eval }\lceil M\rceil \bar{n}(M \bar{n}) \\
& \Gamma \vdash \mathrm{P} M \bar{n} \equiv P: \operatorname{eval}\lceil M\rceil \bar{n}(M \bar{n})
\end{aligned}
$$

This One Weird Trick
Closed terms are stable by substitution!

## The major insight for "MLTT"

## Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)
$i$ and $Y$ will only compute on (deep normal) closed terms

$$
\begin{aligned}
& \frac{\Gamma \vdash M \equiv N: \mathbb{N} \rightarrow \mathbb{N}}{\Gamma \vdash ¢ M \equiv \oint N: \mathbb{P}} \quad \frac{\Gamma \vdash M \equiv M^{\prime}: \mathbb{N} \rightarrow \mathbb{N} \quad \Gamma \vdash N \equiv N^{\prime}: \mathbb{N}}{\Gamma \vdash \text { Q } M N \equiv \text { ¢ } M^{\prime} N^{\prime}: \operatorname{eval}(8 M) N(M N)} \\
& \frac{\Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N} \quad M \text { closed dnf }}{\Gamma \vdash \rho M \equiv\lceil M\rceil: \mathbb{P}} \\
& \Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N} \quad M, P \text { closed dnf } \quad n \in \mathbf{N} \quad \Gamma \vdash P: \text { eval }\lceil M\rceil \bar{n}(M \bar{n}) \\
& \Gamma \vdash \mathrm{P} M \bar{n} \equiv P: \text { eval }\lceil M\rceil \bar{n}(M \bar{n})
\end{aligned}
$$

This One Weird Trick
Closed terms are stable by substitution!
(Some additional technicalities to validate $\eta$-laws.)

## The Secret Sauce

These functions return hereditarily positive types (aka $\Sigma_{1}^{0}$ formulae)

## The Secret Sauce

These functions return hereditarily positive types (aka $\Sigma_{1}^{0}$ formulae)
$\frac{\Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N} \quad M \text { closed dnf }}{\Gamma \vdash ¢ M \equiv\lceil M\rceil: \mathbb{P}}$

## The Secret Sauce

These functions return hereditarily positive types (aka $\Sigma_{1}^{0}$ formulae)

$$
\begin{aligned}
& \Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N} \quad M \text { closed dnf } \\
& \Gamma \vdash \text { \& } M \equiv\lceil M\rceil: \mathbb{P}
\end{aligned}
$$

$$
\begin{aligned}
& \text { eval } \quad: \quad \mathbb{P} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \rightarrow \square \\
& \text { eval } f n v \quad:=\quad \Sigma k: \mathbb{N} \text {. step } k(\text { run } f n) v \\
& \text { step } \quad: \quad \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \text { option } \mathbb{N}) \rightarrow \mathbb{N} \rightarrow \square \\
& \text { step Opv }:=p \mathrm{O}=\text { Some } v \\
& \operatorname{step}(\mathrm{~S} k) p v:=\quad(p k=\text { None }) \times(\operatorname{step} k(p \circ \mathrm{~S}) v)
\end{aligned}
$$

## The Secret Sauce

These functions return hereditarily positive types (aka $\Sigma_{1}^{0}$ formulae)

$$
\begin{aligned}
& \Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N} \quad M \text { closed dnf } \\
& \Gamma \vdash ¢ M \equiv\lceil M\rceil: \mathbb{P} \\
& \begin{array}{c}
\Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N} \quad M, P \text { closed } \mathrm{dnf} \quad n \in \mathbf{N} \quad \Gamma \vdash P: \operatorname{eval}\lceil M\rceil \bar{n}(M \bar{n}) \\
\hline \Gamma \vdash P M \bar{n} \equiv P: \operatorname{eval}\lceil M\rceil \bar{n}(M \bar{n})
\end{array} \\
& \text { eval } \quad: \quad \mathbb{P} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \rightarrow \square \\
& \text { eval } f n v \quad:=\quad \Sigma k: \mathbb{N} \text {. step } k(\text { run } f n) v \\
& \text { step } \quad: \quad \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \text { option } \mathbb{N}) \rightarrow \mathbb{N} \rightarrow \square \\
& \text { step O } p v \quad:=\quad p \mathrm{O}=\text { Some } v \\
& \text { step }(\mathrm{S} k) p v:=\quad(p k=\text { None }) \times(\operatorname{step} k(p \circ \mathbf{S}) v)
\end{aligned}
$$

These types have canonical "absolute" values!

## The Basic Model

## A variant of Abel's style NbE model in (small) IR

## The Basic Model

## A variant of Abel's style NbE model in (small) IR

- Type formation is defined inductively: $\Gamma \Vdash A$

$$
\left.\frac{A \Rightarrow_{w h}^{*} \mathbb{N}}{\mathfrak{r}_{\mathbb{N}}: \Gamma \Vdash A} \quad A \Rightarrow_{w h}^{*} \Pi(x: X) . Y \quad p: \Gamma \Vdash X \quad q: \Gamma, x: X \Vdash Y\right)
$$

## The Basic Model

## A variant of Abel's style NbE model in (small) IR

- Type formation is defined inductively: $\Gamma \Vdash A$

$$
\left.\frac{A \Rightarrow_{w h}^{*} \mathbb{N}}{\mathfrak{r}_{\mathbb{N}}: \Gamma \Vdash A} \quad A \Rightarrow_{\mathrm{wh}}^{*} \Pi(x: X) . Y \quad p: \Gamma \Vdash X \quad q: \Gamma, x: X \Vdash Y\right)
$$

- Term typedness $\Gamma \Vdash M: A \mid p$ is defined by recursion on $p: \Gamma \Vdash A$

| $\Gamma \Vdash M: \mathbb{N} \mid \mathfrak{r}_{\mathbb{N}}$ | $:=$ |
| :--- | :--- |
| $\Gamma \Vdash M: \Pi(x: A) . B \mid \mathfrak{r}_{\Pi} p q$ | $:=$ |
|  | $\Pi(\rho: \Delta \leq \Gamma) .(\Delta \Vdash a: A\langle\rho\rangle \mid p) \rightarrow \Delta \Vdash M\langle\rho\rangle a: B\{\rho, a\} \mid q$ |
| $\frac{M \Rightarrow_{\mathrm{wh}}^{*} \mathrm{O}}{\Gamma \Vdash M \in \mathbb{N}} \frac{M \Rightarrow_{\mathrm{wh}}^{*} \mathrm{~S} N \quad \Gamma \Vdash N \in \mathbb{N}}{\Gamma \Vdash M \in \mathbb{N}} \quad$$\Gamma \vdash n: \mathbb{N} \quad$ wne $(n)$ <br> $\Gamma \Vdash n \in \mathbb{N}$ |  |

## The Basic Model

## A variant of Abel's style NbE model in (small) IR

- Type formation is defined inductively: $\Gamma \Vdash A$
$\frac{A \Rightarrow_{\mathrm{wh}}^{*} \mathbb{N}}{\mathfrak{r}_{\mathbb{N}}: \Gamma \Vdash A} \frac{A \Rightarrow_{\mathrm{wh}}^{*} \Pi(x: X) . Y \quad p: \Gamma \Vdash X}{} \frac{\mathfrak{r}_{\Pi} p q: \Gamma \Vdash A}{}$
- Term typedness $\Gamma \Vdash M: A \mid p$ is defined by recursion on $p: \Gamma \Vdash A$

| $\Gamma \Vdash M: \mathbb{N} \mid \mathfrak{r}_{\mathbb{N}}$ | $:=$ |
| :--- | :--- |
| $\Gamma \Vdash M: \Pi(x: A) \cdot B \mid \mathfrak{r}_{\Pi} p q$ | $:=$ |
|  | $\Pi(\rho: \Delta \leq \Gamma) \cdot(\Delta \Vdash a: A\langle\rho\rangle \mid p) \rightarrow \Delta \Vdash M\langle\rho\rangle a: B\{\rho, a\} \mid q$ |
| $\frac{M \Rightarrow_{\mathrm{wh}}^{*} \mathrm{O}}{\Gamma \Vdash M \in \mathbb{N}} \frac{M \Rightarrow_{\mathrm{wh}}^{*} \mathrm{~S} N \quad \Gamma \Vdash N \in \mathbb{N}}{\Gamma \Vdash M \in \mathbb{N}} \quad$$\Gamma \vdash n: \mathbb{N} \quad$ wne $(n)$ <br> $\Gamma \Vdash n \in \mathbb{N}$ |  |

(ditto for conversion) (+ second layer of validity aka closure by substitution)

## The Basic Model for Dummies

This is just realizability with (a lot of) bells and whistles

$$
\Gamma \Vdash M: A \mid p_{A} \quad \sim \quad M \text { wh-normalizes to a value at type } A
$$

## The Basic Model for Dummies

This is just realizability with (a lot of) bells and whistles

$$
\Gamma \Vdash M: A \mid p_{A} \quad \sim M \text { wh-normalizes to a value at type } A
$$

Being a value at type $A$ is defined by case-analysis on $A$.

## The Basic Model for Dummies

This is just realizability with (a lot of) bells and whistles

$$
\Gamma \Vdash M: A \mid p_{A} \quad \sim \quad M \text { wh-normalizes to a value at type } A
$$

Being a value at type $A$ is defined by case-analysis on $A$.

Importantly, all well-typed neutrals are values of the corresponding type.

$$
\overline{\text { wne }(x)} \quad \frac{\text { wne }(n)}{\text { wne }(n M)} \quad \frac{\text { wne }(n)}{\text { wne }\left(\mathbb{N}_{\text {rec }} P T_{\mathrm{O}} T_{\mathrm{S}} n\right)} \quad \ldots
$$

This is the standard and correct way to handle open terms.

## The Basic Model for Dummies

This is just realizability with (a lot of) bells and whistles

$$
\Gamma \Vdash M: A \mid p_{A} \quad \sim \quad M \text { wh-normalizes to a value at type } A
$$

Being a value at type $A$ is defined by case-analysis on $A$.

Importantly, all well-typed neutrals are values of the corresponding type.

$$
\overline{\text { wne }(x)} \quad \frac{\text { wne }(n)}{\text { wne }(n M)} \quad \frac{\text { wne }(n)}{\text { wne }\left(\mathbb{N}_{\text {rec }} P T_{\mathrm{O}} T_{\mathrm{S}} n\right)} \quad \ldots
$$

This is the standard and correct way to handle open terms.
(They don't exist anyways, remember?)

## Comparison with standard NbE

## Type interpretation unchanged

- No funny business with effects or whatnot
- In particular we have the same canonicity properties


## Comparison with standard NbE

## Type interpretation unchanged

- No funny business with effects or whatnot
- In particular we have the same canonicity properties


## Differences with Abel's model

$\rightsquigarrow$ annotate reducibility proofs with deep normalization

$$
\Gamma \Vdash M: A \mid p_{A} \quad \text { implies } \quad M \Downarrow_{\text {deep }} M_{0} \quad \text { with } \quad \Gamma \vdash M \equiv M_{0}: A
$$

$\rightsquigarrow$ normal / neutral terms generalized into deep and weak-head variants
$\rightsquigarrow$ extend neutrals to contain quotes blocked on open terms
$\frac{\operatorname{dnf}(M) \quad M \text { not closed }}{\text { wne }(8 M)} \frac{\operatorname{dnf}(M) \quad \operatorname{dnf}(N) \quad M \text { or } N \text { not closed }}{\text { wne }(9 M N)}$

## Comparison with standard NbE

## Type interpretation unchanged

- No funny business with effects or whatnot
- In particular we have the same canonicity properties


## Differences with Abel's model

$\rightsquigarrow$ annotate reducibility proofs with deep normalization

$$
\Gamma \Vdash M: A \mid p_{A} \quad \text { implies } \quad M \Downarrow_{\text {deep }} M_{0} \quad \text { with } \quad \Gamma \vdash M \equiv M_{0}: A
$$

$\rightsquigarrow$ normal / neutral terms generalized into deep and weak-head variants
$\rightsquigarrow$ extend neutrals to contain quotes blocked on open terms
$\frac{\operatorname{dnf}(M) \quad M \text { not closed }}{\text { wne }(8 M)} \frac{\operatorname{dnf}(M) \quad \operatorname{dnf}(N) \quad M \text { or } N \text { not closed }}{\text { wne }(9 M N)}$

## ... and that's about it.

## Some Dust under the Rug

"MLTT" is reduction-free. I didn't define properly reduction!

- For the MLTT fragment, weak-head reduction is standard.
- Deep reduction is just iterated weak-head reduction.

$$
\frac{M N \Rightarrow_{\mathrm{wh}} R}{M N \Rightarrow_{\text {deep }} R} \quad \frac{\operatorname{wne}(M) \quad M \Rightarrow_{\mathrm{wh}} R}{M N \Rightarrow_{\text {deep }} R N} \quad \frac{\operatorname{dne}(M) \quad N \Rightarrow_{\mathrm{wh}} R}{M N \Rightarrow_{\text {deep }} M R}
$$

- In particular, it is deterministic (critical!)


## Some Dust under the Rug

"MLTT" is reduction-free. I didn't define properly reduction!

- For the MLTT fragment, weak-head reduction is standard.
- Deep reduction is just iterated weak-head reduction.

$$
\frac{M N \Rightarrow_{\mathrm{wh}} R}{M N \Rightarrow_{\mathrm{deep}} R} \quad \frac{\text { wne }(M) \quad M \Rightarrow_{\mathrm{wh}} R}{M N \Rightarrow_{\mathrm{deep}} R N} \quad \frac{\text { dne }(M) \quad N \Rightarrow_{\mathrm{wh}} R}{M N \Rightarrow_{\text {deep }} M R}
$$

- In particular, it is deterministic (critical!)

Reduction for 9 is straightforward

$$
\frac{M \Rightarrow_{\text {deep }} R}{¢ M \Rightarrow_{\mathrm{wh}} \text { \& } R} \quad \frac{M \text { closed dnf }}{\text { ¢ } M \Rightarrow_{\mathrm{wh}}\lceil M\rceil}
$$

## Don't Quote Me on That

The only tricky case is the rule for $?$

$$
\frac{\Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N} \quad \Gamma \vdash N: \mathbb{N}}{\Gamma \vdash \text { ¢ } M N: \operatorname{eval}(\text { (Я } M) N(M N)}
$$

## Don't Quote Me on That

The only tricky case is the rule for 9

$$
\frac{\Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N} \quad \Gamma \vdash N: \mathbb{N}}{\Gamma \vdash \text { ¢ } M N: \operatorname{eval}(\text { ( } M) N(M N)}
$$

$\rightsquigarrow$ congruence as expected

$$
\frac{M \Rightarrow_{\text {deep }} R}{\mathrm{Y} M N \Rightarrow_{\mathrm{wh}} \mathrm{Y} R N} \quad \frac{M \mathrm{dnf} \quad N \Rightarrow_{\text {deep }} R}{\mathrm{Y} M N \Rightarrow_{\mathrm{wh}} \mathrm{Y} M R}
$$

## Don't Quote Me on That

The only tricky case is the rule for 9

$$
\frac{\Gamma \vdash M: \mathbb{N} \rightarrow \mathbb{N} \quad \Gamma \vdash N: \mathbb{N}}{\Gamma \vdash \mathrm{Q} M N: \operatorname{eval}(\mathrm{Q} M) N(M N)}
$$

$\rightsquigarrow$ congruence as expected

$$
\frac{M \Rightarrow_{\text {deep }} R}{\text { Y } M N \Rightarrow_{\mathrm{wh}} \text { Y } R N} \quad \frac{M \mathrm{dnf}}{\text { Y } M N \Rightarrow_{\mathrm{wh}} \text { QMR }}
$$

$\rightsquigarrow$ for the actual reduction, basically compute the unique fuel

$$
M \text { closed, dnf } \quad k \text { smallest integer s.t. } \quad M \bar{n} \Downarrow^{k} \bar{v}
$$

$$
\text { Y } M \bar{n} \Rightarrow_{\text {wh }}(\bar{k}, \text { refl }, \ldots, \text { refl })
$$

Fact 1: $Q M \bar{n}: \operatorname{eval}\lceil M\rceil \bar{n}(M \bar{n}) \equiv \Sigma k: \mathbb{N} . \operatorname{step} k(\operatorname{run}\lceil M\rceil \bar{n})(M \bar{n})$
Fact 2: step $\bar{k} p v:=(p \mathrm{O}=$ None $) \times \ldots \times(p \overline{k-1}=$ None $) \times(p \bar{k}=$ Some $\bar{v})$

## L' $\eta$ de droit

## Some technical details to handle $\eta$-laws

$$
\frac{\Gamma \vdash M: \Pi(x: A) . B \quad x \notin M}{\Gamma \vdash \lambda x: A \cdot M x \equiv M: \Pi(x: A) \cdot B} \quad \frac{\Gamma \vdash M: \Sigma(x: A) . B}{\Gamma \vdash\langle M . \mathrm{fst}, M . \mathrm{snd}\rangle_{A, B} \equiv M: \Sigma(x: A) . B}
$$

## L' $\eta$ de droit

## Some technical details to handle $\eta$-laws

$\frac{\Gamma \vdash M: \Pi(x: A) . B \quad x \notin M}{\Gamma \vdash \lambda x: A . M x \equiv M: \Pi(x: A) \cdot B} \quad \frac{\Gamma \vdash M: \Sigma(x: A) . B}{\Gamma \vdash\langle M . \mathbf{f s t}, M \cdot \mathbf{s n d}\rangle_{A, B} \equiv M: \Sigma(x: A) \cdot B}$

## Quoting has to be stable by these $\eta$ laws!

- We have to pick a canonical representative for dnf up to $\eta$
- We cannot infer the type annotations
- Thankfully they are not computationally relevant


## L' $\eta$ de droit

## Some technical details to handle $\eta$-laws

$\frac{\Gamma \vdash M: \Pi(x: A) \cdot B \quad x \notin M}{\Gamma \vdash \lambda x: A \cdot M x \equiv M: \Pi(x: A) \cdot B} \quad \frac{\Gamma \vdash M: \Sigma(x: A) \cdot B}{\Gamma \vdash\langle M . \mathrm{fst}, M . \operatorname{snd}\rangle_{A, B} \equiv M: \Sigma(x: A) . B}$

## Quoting has to be stable by these $\eta$ laws!

- We have to pick a canonical representative for dnf up to $\eta$
- We cannot infer the type annotations
- Thankfully they are not computationally relevant


## Simple* solution

Quoting performs $\eta$-reduction and erasure of type annotations.

## The Theorems

We say that the computation model ( $\lceil\cdot\rceil$, run) is adequate when: for all $M \in$ term and $n, r, k \in \mathbf{N}, M \bar{n} \Downarrow^{k} \bar{r}$ implies

- run $\lceil M\rceil \bar{n} \bar{k} \Downarrow$ Some $\bar{r}$
- run $\lceil M\rceil \bar{n} \overline{k^{\prime}} \Downarrow$ None for all $k^{\prime}<k$


## The Theorems

We say that the computation model ( $\lceil\cdot\rceil$, run) is adequate when: for all $M \in$ term and $n, r, k \in \mathbf{N}, M \bar{n} \Downarrow^{k} \bar{r}$ implies

- run $\lceil M\rceil \bar{n} \bar{k} \Downarrow$ Some $\bar{r}$
- run $\lceil M\rceil \bar{n} \overline{k^{\prime}} \Downarrow$ None for all $k^{\prime}<k$

Theorem
If the model is adequate, the logical relation is sound and complete.

## A Taste of Not Nice and Dire

A sketch of why $P$ and $Q$ validate their type

## The Real Results

Theorem (It's written on the can)
"MLTT" proves $\mathrm{CT}_{\Sigma}$.

## The Real Results

Theorem (It's written on the can)
"MLTT" proves $\mathrm{CT}_{\Sigma}$.

## Reminder

Soundness means that a typable term is in the logical relation.

## The Real Results

Theorem (It's written on the can) "MLTT" proves $\mathrm{CT}_{\Sigma}$.

## Reminder

Soundness means that a typable term is in the logical relation.
Theorem (Consistency)
There is no closed term of type $\perp$ in "MLTT".

## The Real Results

```
Theorem (It's written on the can)
"MLTT" proves CT 
```


## Reminder

Soundness means that a typable term is in the logical relation.
Theorem (Consistency)
There is no closed term of type $\perp$ in "MLTT".

## Theorem (Canonicity)

All closed terms of type $\mathbb{N}$ in "MLTT" reduce to an integer.

## The Real Results

```
Theorem (It's written on the can)
"MLTT" proves CT 
```


## Reminder

Soundness means that a typable term is in the logical relation.

## Theorem (Consistency)

There is no closed term of type $\perp$ in "MLTT".

## Theorem (Canonicity)

All closed terms of type $\mathbb{N}$ in "MLTT" reduce to an integer.
Theorem (Normalization)
All typed terms of "MLTT" weak-head normalize.

## Formalization

Based on Adjedj et al. CPP'24 "Martin-Löf à la Coq" (using small IR)

## Formalization

## Based on Adjedj et al. CPP'24 "Martin-Löf à la Coq" (using small IR)

The base theory contains one universe, $\Pi / \Sigma$ types with $\eta$-laws, $\perp, \mathbb{N}$, Id MLTT +9 fully formalized in Coq

As of 2023/12/01, Y basically done, only annoying stuff remains

## Formalization

Based on Adjedj et al. CPP'24 "Martin-Löf à la Coq" (using small IR)
The base theory contains one universe, $\Pi / \Sigma$ types with $\eta$-laws, $\perp, \mathbb{N}$, Id MLTT +9 fully formalized in Coq

As of 2023/12/01, Y basically done, only annoying stuff remains No expected surprise, just tedious proofs on untyped reduction.

- A weak form of confluence
- Proving that erasure is computationally harmless


## Formalization

Based on Adjedj et al. CPP'24 "Martin-Löf à la Coq" (using small IR)
The base theory contains one universe, $\Pi / \Sigma$ types with $\eta$-laws, $\perp, \mathbb{N}$, Id MLTT +9 fully formalized in Coq

As of 2023/12/01, Y basically done, only annoying stuff remains No expected surprise, just tedious proofs on untyped reduction.

- A weak form of confluence
- Proving that erasure is computationally harmless

Nightmare stuff I'm not gonna prove: the existence of adequate models
Typical instance of "conceptually trivial but practically impossible".

## Conclusion

- MLTT $+\mathrm{CT}_{\Sigma}$ is obviously consistent, obviously
- The model is a trivial adaptation of standard NbE models
- Open terms do not exist. I have met them.
- A sizable chunk proved in Coq
- I must be missing something from our anonymous experts


## Scribitur ad narrandum, non ad probandum

## Thanks for your attention.

